H.G. BARKER COLLEGE

L.E.L.

D.S.K. FORM VI

B.J.R. MATHEMATICS

R.A.A. MATHEMATICS

R.V. . 2/3 UNIT

D.M.H.

AM THURSDAY 17 AUGUST H.S.C. TRIAL 1989.

TIME: 3 HOURS

200 copies

INSTRUCTIONS:

- * ALL questions may be attempted, and are of equal value.
- * All necessary working should be shown in every question. Marks may not be awarded for careless or badly arranged work.
- * Standard integrals are printed at the end of the paper.
- * Approved calculators may be used.
- Each question attempted is to be returned in a separate Booklet marked Question 1, Question 2, etc on the cover. Each Booklet must show your Candidate's Number.
- * If you do not attempt a question, you must still hand in a Booklet for that question with NOT ATTEMPTED written clearly on the front.

Question 1:

- (a) Evaluate: $\frac{\sqrt{16\cdot04}}{1\cdot2\times3\cdot56}$ correct to 2 decimal places.
- (b) Solve the following equations:

(i)
$$y^2 - y - 12 = 0$$

(ii)
$$\frac{x+1}{2} - \frac{x-1}{3} = 10$$

(111)
$$9^{x} = \frac{1}{27}$$

- (c) Factorise and simplify: $\frac{4m^2 4}{m 1}$
- (d) Rationalise the denominator and simplify: $\frac{\sqrt{2}}{\sqrt{2}-1}$
- (e) Given that $V = \frac{4}{3} \pi R^3$, find the value of R if V = 1000. Give your answer correct to one decimal place.

Question 2:

- (a) The points A and B have coordinates (-3,6) and (5,2) respectively. Plot these points on a number plane.
 - (i) Find the equation of the line ℓ joining the points A and B.
 - (ii) The line k is drawn through B with a gradient of 2. Show that the equation of k is: 2x y 8 = 0
 - (iii) Show that the line k passes through P(2,-4).
 - (iv) Prove that the triangle ABP is right-angled.
 - (v) Find the area of triangle ABP.
- (b) Sketch the graph of $y = \sqrt{9 x^2}$. State its domain and range.

Question 3:

(a)

figure not to scale

- (i) Use the <u>Cosine</u> rule to calculate ∠BAC to the nearest degree.
- (ii) Calculate the area of the triangle ABC. Give your answer correct to two significant figures.
- (b) An aircraft flies 500 km from its base on a bearing of 050°T.

 It then flies 240 km due North. Calculate its distance (nearest km) from its base and the bearing (nearest degree) in which it must fly to return to its base in a direct line.
- (c) Prove that: tan A sin A + cos A = sec A
- (d) Sketch (not on graph paper): $y = 3 \sin 2x$ for $0 \le x \le 2\pi$

Question 4:

(a)

figure not to scale

Given that RT is parallel to PQ and that triangle PQR is isosceles, find the value of \mathbf{x} , giving reasons.

(b)

M is the midpoint of AB, MP = BQ and MP | BQ

- (i) draw a neat copy in your exam book.
- (ii) Prove that $\triangle PAM = \triangle QMB$
- (iii) Prove: AP | MQ

194. Ccnt.....

QUESTION 4 C'tinued:

(c)

figure not to scale

ABC is a triangle, right-angled at A and AD is drawn perpendicular to BC. AB = 15 cm and AD = 12 cm

- (i) draw a neat sketch and mark on it all the given information
- (ii) calculate the length of BD
- (iii) PROVE AABC is similar to ADBA
- · (iv) find the length of AC

Question 5:

(a) Differentiate with respect to x:

(i)
$$y = 4x^3 - 2x + \frac{1}{x^2} - 1$$

(ii)
$$y = x^2 e^X$$

(iii)
$$y = \frac{x+1}{x-1}$$

(b) Evaluate the following integrals:

(1)
$$\int_{1}^{4} (x - \frac{1}{x^2}) d$$

(11)
$$\int_{0}^{1} (2x - 1)^{4} d$$

(iii)
$$\int_{a}^{\frac{\pi}{4}} \cos 2x \ d$$

Question 6:

- (a) Without solving the equation $2x^2 3x + 6 = 0$ which has the roots α and β , find the value of:
 - (1) $\alpha + \beta$
 - (11) aß
- (iii) $\alpha^2 + \beta^2$
- (b) For what values of k does the equation $x^2 (k + 1)x + 1 = 0$ have:
 - (i) equal roots
 - (ii) no real solutions
- (c) Given that the parabola has the focus at (2,1) and vertex at (2,3) find:
 - (i) focal length
 - (ii) directrix
- (iii) axis of symmetry
- (iv) equation of the parabola
- (v) sketch the parabola

Question 7:

- (a) Which term of the sequence 2, 6, 18 is 486?
- (b) A contractor undertakes to bore a well for \$9 for the first 10 metres, \$10 for the next 10 metres, \$11 for the next 10 metres and so on.
 What is the cost of a well 500 metres deep?
- (c) Given: $f(x) = x^3 12x$
 - (i) find the coordinates of the maximum and minimum turning points
 - (ii) find the coordinates of any points of inflexion (if they exist)
 - (iii) DRAW a neat sketch, indicating all essential features.

Question 8:

- (a) Evaluate the $\lim_{x \to \infty} \frac{x^2 2x + 5}{2x^2 + 3x 7}$
- (b) Find the equation of the curve y = f(x) given that $\frac{dy}{dx} = 1 5x^4$ and that the curve passes through (1,3)
- (c) Sketch the curves $y = x^2 1$ and $y = 1 x^2$ on the <u>SAME</u> number plane. Hence find the area enclosed between the two curves.
- (d) Calculate the area enclosed between the curve $y = \frac{1}{4x + 1}$, the x axis, x = 1 and x = 5
 - (i) by Simpson's rule using 3 function values
 - (ii) by integration (the exact value).

Question 9:

- (a) Solve the equation: $2 \cos x + 1 = 0$ for $0 \le x \le 2\pi$
- (b) Find the equation of the tangent to the curve $y = \sin 2x$ when $x = \frac{\pi}{2}$

(c)

In a circle radius r, the arc AB subtends an angle $\boldsymbol{\theta}$ at the centre.

- Find an expression for the length of arc AB and hence write down an expression for the perimeter of the sector AOB
- (ii) If the perimeter of the sector AOB is 8 cm, write an expression for θ in terms of r
- (iii) Find the maximum area of the sector AOB when the perimeter of the sector AOB is 8 cm.

Question 10:

- (a) Find the volume of the solid of revolution formed by rotating the curve $y = e^{x^2} + e^{-x}$ about the x axis between x = -1 and x = 1
- On the birth of their daughter Karen, the proud parents Richard and Helen decided to start an investment fund for her. They agreed to deposit \$500 on the lst august 1989 (the date of birth) and \$500 on every subsequent birthday up to and including her 21st birthday. If we assume the interest is being paid at the rate of 15% p.a. (compound interest), find how much Karen will receive on her 21st birthday?
- (c) The temperature of a cup of black coffee is given by T = 100e^{-t/5} where t is the time in minutes.
 If it is too hot to drink above 55°C and too cold below 25°C, calculate the length of time during which the coffee is drinkable (to the nearest second).

END OF PAPER

T= 25=110===15 dA 2-2-10 ⇒ MAX when raz 0 charge in time = 3.9 min コイリ(さとナン・シャン・シナシ) = 211(1, 2+2-1, 22) 0 A=P(1+50) A = 580 (1.15)"+ 570(115)"+ -... + 570(115) 214 birthday - no interest O = 500 | 1 + 115+115+ - . . +115" ~ 500) a(1'-1) > 500 1.(45'-1) - 570 (21.664746-1) - 16885.82 (1) c) T= 100 = 45 T=55 = 100 C o.55: e-th Ly(0.55) =- 1/5 1 = 2.989 min

, 0.25 = -45

+=69314

= 7 min 565 (Never 44.)

61. a) a=2, r=3 T, = ar -1 = +16 2. 311 = 486 3" = 243 = 3 1 > 6 b) 1:50, a=9, d=1 0 S = 1/24 +(n-1) d] = 25 (18+49) = \$1675 D

area enclosed = 4 [(1-x) dx

i) Simpson's Role A = \frac{1}{3} [f(a) + f(b) + + f(\frac{mb}{2})]

= +[loy(+x+)]

(9.4) 241x+1=0, 41x=-1

= 2652x

y-0=-2(x-E)

= 1 1 (5-2)

2x+y -1 = 0

1 + P = 2r +r +

and sector A=== 0

= # [log =1 - log 5] = # log (=) 0

4)

y = x1-12x y'= 7x -12 = 3(x2-4) 3(4-2)(4+2) =0 x= 2-2 (2,-16) (-2,16) y" = 650, when x=2, y >0 (2,-16) ain x=2, y 4 (-2,16) men

at x=0, y =0 (0,0) pl. of intl. check-change in concenity

1 frskotch

08. a) lim 1-文十六

0 (423) 0 1) for top 0 fr 14.